Amani et al., 2024. Exposed sediments in a temperate-climate reservoir under dam decommissioning contain large stocks of highly bioreactive organic matter. Limnetica 43-1, 2024

SUPPLEMENTAL INFORMATION

Table S1. Campaign and date (day/month/year) of the samplings, site, and the last inundation date and sediment exposure time (i.e., time since last inundation) for each site. *Campaña y día (día/mes/año) de los muestreos, sitio de muestreo, último día de inundación y tiempo de exposición del sedimento (tiempo desde la última inundación) para cada sitio.*

Campaign	Sampling date	Site	Last inundation date	Sediment exposure time
C1	10/09/2018	А	04/08/2018	37
C1	10/09/2018	В	27/07/2018	44
C1	10/09/2018	С	18/07/2018	54
C1	10/09/2018	D	01/09/2018	9
C1	10/09/2018	Е	21/08/2018	20
C1	10/09/2018	F	13/08/2018	28
C2	22/10/2018	А	04/08/2018	79
C2	22/10/2018	В	27/07/2018	86
C2	22/10/2018	С	18/07/2018	96
C2	22/10/2018	D	01/09/2018	51
C2	22/10/2018	E	21/08/2018	62
C2	22/10/2018	F	13/08/2018	70
C3	21/01/2019	А	04/08/2018	170
C3	21/01/2019	В	27/07/2018	177
C3	21/01/2019	С	18/07/2018	187
C3	21/01/2019	D	01/09/2018	142
C3	21/01/2019	Е	21/08/2018	153
C4	21/01/2019	F	13/08/2018	161
C4	09/04/2019	А	04/08/2018	248

C4	09/04/2019	В	27/07/2018	255
C4	09/04/2019	С	18/07/2018	265
C4	09/04/2019	D	01/09/2018	220
C4	09/04/2019	E	21/08/2018	231
C4	09/04/2019	F	13/08/2018	239
C5	02/07/2019	А	04/08/2018	454
C5	02/07/2019	В	27/07/2018	339
C5	02/07/2019	С	18/07/2018	349
C5	02/07/2019	D	01/09/2018	304
C5	02/07/2019	E	21/08/2018	315
C5	02/07/2019	F	13/08/2018	323
C6	18/02/2020	А	04/08/2018	563
C6	18/02/2020	В	27/07/2018	570
C6	18/02/2020	С	18/07/2018	580
C6	18/02/2020	D	01/09/2018	535
C6	18/02/2020	Е	21/08/2018	546
C6	18/02/2020	F	13/08/2018	554

Table S2. Site, number of samples collected at each site for each campaign (n), longitude, latitude, and elevation of each site. *Punto de muestreo, número de muestras recogidas en cada punto para cada campaña (n), longitud, latitud y elevación de cada punto.*

Site	n	Longitude (°)	Latitude (°)	Elevation (m)
А	3	-1.784684	43.21684	339.2
В	3	-1.784684	43.216885	342.3
С	3	-1.7847	43.216953	345.2
D	3	-1.786541	43.216628	335.2
Е	3	-1.78645	43.216686	335.2
F	3	-1.786456	43.216755	335.2

Table S3–7. The content and respiration of bulk and water-extractable organic matter (WEOM) in dry sediments from inland waters and dry soils. We calculated the mean, standard error (SE), and the range of each parameter by considering each row as a data point. We converted respiration rates in μ g CO₂ g⁻¹ dry sediment/soil h⁻¹ to μ g O₂ g⁻¹ dry sediment/soil h⁻¹ by assuming a respiratory coefficient of 1 between CO₂ and O₂ for aerobic incubation, and, thus, by multiplying the magnitude of respiration rate by 0.73 (32 g of consumed O₂/44 g of produced CO₂). *Contenido y respiración de la MO en peso seco y WEOM en sedimentos secos de aguas continentales y suelos secos. Calculamos la media, error estándar (SE), y el rango de cada parámetro considerando cada fila como un punto de datos. Convertimos los ratios de respiración en \mug CO₂ g⁻¹ sedimento seco/suelo h⁻¹ a \mug O₂ g⁻¹ sedimento seco/suelo h⁻¹ asumiento un coeficiente de respiración de 1 entre CO₂ y O₂ para la incubación aeróbica y, por tanto, multiplicando la magnitud del ratio de respiración por 0.73 (32g de O₂ consumido/44 g de CO₂ producido).*

Table S3. The content of WEOM (mean \pm SE; range: 0.52 ± 0.06 , $0.01-1.06 \text{ mg C g}^{-1}$ dry sediment) in dry sediments from lakes, and %BDOC (mean = 57.97 %) in 3 reservoirs and 1 wetland for incubations of an average time of 28 days at 28 °C. *Contenido de WEOM (media* \pm SE; rango: 0.52 ± 0.06 , $0.01-1.06 \text{ mg C g}^{-1}$ sedimento seco) en sedimentos secos de lagos, y %BDOC (media=57.97 %) en 3 embalses y 1 humedal para incubaciones a 28°C de 28 días de media.

						[WEOC]			BDOC	
Reference	System	Name, location	Sed/soil	Drying	Extractant	Mean	Unit	Incub time (days)	(%)	Comment
Han et al. (2021)	Lake	Yangtze River, China	Sediment	Freeze-dried	Ultrapure water	0.01	mg C/g sed			
Wang et al. (2022)	Lake	Lake Hulun, China	Sediment	Freeze-dried	Ultrapure water	0.63	mg C/g sed			
Li et al. (2016)	Lake	Dongting Lake, China	Sediment	Freeze-dried	Milli-Q water	0.2	mg C/g sed			
Li et al. (2014)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q Water	0.3	mg C/g sed			
Gu et al. (2020)	Wetland	Wetland	Soil	Dried at 45 °C	Milli-Q water	0.2	mg C/g sed	30	56.3	
(Li et al. 2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.5	mg C/g sed			January-Northern
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.37	mg C/g sed			January-Central
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.58	mg C/g sed			January-Southern
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.54	mg C/g sed			April-Northern

Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.35	mg C/g sed	April-central
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.23	mg C/g sed	April-southern
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.47	mg C/g sed	July-Northern
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.31	mg C/g sed	July-Central
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.38	mg C/g sed	July-Southern
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.39	mg C/g sed	October-Northern
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.34	mg C/g sed	October-Central
Li et al. (2015)	Lake	Lake Erhai, China	Sediment	Freeze-dried	Milli-Q water	0.39	mg C/g sed	October-Southern
Wang et al. (2011)	Lake	Lake Poyang, China	Sediment	Freeze-dried	Distilled water	0.76	mg C/g sed	B-1
Wang et al. (2011)	Lake	Lake Poyang, China	Sediment	Freeze-dried	Distilled water	0.56	mg C/g sed	B-2
Wang et al. (2011)	Lake	Dongting Lake, China	Sediment	Freeze-dried	Distilled water	0.82	mg C/g sed	
Wang et al. (2011)	Lake	Lake Hongze, China	Sediment	Freeze-dried	Distilled water	0.76	mg C/g sed	
Wang et al. (2011)	Lake	Lake Xuanwu, China	Sediment	Freeze-dried	Distilled water	1.04	mg C/g sed	
Wang et al. (2011)	Lake	Lake Yue, China	Sediment	Freeze-dried	Distilled water	1.06	mg C/g sed	site 1
Wang et al. (2011)	Lake	Lake Yue, China	Sediment	Freeze-dried	Distilled water	1.06	mg C/g sed	Site 2
Wang et al. (2011)	Lake	Lake Wuli, China	Sediment	Freeze-dried	Distilled water	1.06	mg C/g sed	
Wang et al. (2011)	Lake	Lake Gong, China	Sediment	Freeze-dried	Distilled water	0.48	mg C/g sed	
Wang et al. (2011)	Lake	Lake East Taihu, China	Sediment	Freeze-dried	Distilled water	0.5	mg C/g sed	

Liu et al. (2021)	Lake	Hafeng Lake of Kaixian, China	Sediment	Air-dried	Distilled water	NA	2	28	46.6	WEOC in mg L^{-1}
Heslop et al. (2017)	Lake	Vault Lake, US	Sediment	Oven-dried		0.25				Slurry filtration
Heslop et al. (2017)	Lake	Vault Lake, US	Sediment	Oven-dried		0.19				Slurry filtration
Liu et al. (2021)	Reservoir	Zhenxi of Fulin, China	Sediment	Air-dried	Distilled water	NA	2	28	58.6	WEOC in mg L^{-1}
(Liu et al. 2021)	Reservoir	Shibaozhai of Zhongxian, China	Sediment	Air-dried	Distilled water	NA	2	28	59.2	WEOC in mg L^{-1}
Liu et al. (2021)	Reservoir	Tujing Zhongxian, China	Sediment	Air-dried	Distilled water	NA	2	28	57.8	WEOC in mg L^{-1}

Table S4. The global content of soil WEOM (mean \pm SE, range: 0.35 \pm 0.03, 0–1.7 mg C/g dry soil) and %BDOC (22.07 \pm 1.36, 4.08–60.73 %) in dry soils. The average incubation temperature is 16.90 °C and average incubation time is 50 days. *Contenido global de WEOM del suelo* (*media* \pm SE, rango: 0.35 \pm 0.03, 0–1.7 mg C/g suelo seco) y %BDOC (22.07 \pm 1.36, 4.08–60.73 %) en suelos secos. La temperatura media de incubación es de 16.90 °C y el tiempo medio de incubación de 50 días.

Reference	Ecosystem	Soil layer	Drying method	Extraction medium	Filter size (µm)	Incubation temp (° C)	Incubation time (days)	[WEOC]	BDOC (% loss)	Comment
Liu et al. (2019)	Arable soil	Top 20 cm	Air dried	Distilled water	0.45	35	60	0.02	39.7	Sloped cropland
Liu et al. (2019)	Grassland soil	Top 20 cm	Air dried	Distilled water	0.45	35	60	0.04	28.9	Grassland
Liu et al. (2019)	Shrubland soil	Top 20 cm	Air dried	Distilled water	0.45	35	60	0.06	29.9	Shrubland
Liu et al. (2019)	Woodland soil	Top 20 cm	Air dried	Distilled water	0.45	35	60	0.04	25.2	Woodland
Liu et al. (2019)	Arable soil	Top 20 cm	Air dried	Distilled water	0.45	20	60	0.02	32.6	Sloped cropland
Liu et al. (2019)	Grassland soil	Top 20 cm	Air dried	Distilled water	0.45	20	60	0.04	22.7	Grassland
Liu et al. (2019)	Shrubland soil	Top 20 cm	Air dried	Distilled water	0.45	20	60	0.06	27	Shrubland
Liu et al. (2019)	Woodland soil	Top 20 cm	Air dried	Distilled water	0.45	20	60	0.04	22.1	Woodland
Liu et al. (2019)	Arable soil	Top 20 cm	Air dried	Distilled water	0.45	4	60	0.02	18.2	Sloped cropland
Liu et al. (2019)	Grassland soil	Top 20 cm	Air dried	Distilled water	0.45	4	60	0.04	15.9	Grassland

Liu et al. (2019)	Shrubland soil	Top 20 cm	Air dried	Distilled water	0.45	4	60	0.06	23.5	Shrubland
Liu et al. (2019)	Woodland soil	Top 20 cm	Air dried	Distilled water	0.45	4	60	0.04	19.3	Woodland
Gu et al. (2020)	Cropland soil	Surface	Dried at 45 ℃	Milli-Q water	0.22	NM	30	0.25	46.7	Cropland soil
Xu et al. (2018)	Arable soil	Surface	Air-dried	Deionized water	0.45	Room Temp (NM)	21	0.02	23.9	Non fertilized soil
Xu et al. (2018)	Arable soil	Surface	Air-dried	Deionized water	0.45	Room Temp (NM)	21	0.02	28.7	Soil fertilized with NPK
Xu et al. (2018)	Arable soil	Surface	Air-dried	Deionized water	0.45	Room Temp (NM)	21	0.04	34.2	Soil fertilized with NPK and and straw
Xu et al. (2018)	Arable soil	Surface	Air-dried	Deionized water	0.45	Room Temp (NM)	21	0.06	42.7	Soil fertilized with manure
Chantigny et al. (2014)	Arable soil	Top 15 cm	Air-dried	Deionized water	NM	NM	NM	0.2	ND	No incubation
Chantigny et al. (2014)	Arable soil	Top 15 cm	Air-dried	Deionized water	NM	NM	NM	0.25	ND	No incubation
Chantigny et al. (2014)	Grassland soil	Top 15 cm	Air-dried	Deionized water	NM	NM	NM	0.5	ND	No incubation
Chantigny et al. (2014)	Grassland soil	Top 15 cm	Air-dried	Deionized water	NM	NM	NM	0.55	ND	No incubation
Gregorich et al. (2003)	Arable soil	Top 15 cm	Air-dried	Deionized water	0.45	35	40	0.57	40	Fertilized with manure
Gregorich et al. (2003)	Arable soil	Top 15 cm	Air-dried	Deionized water	0.45	35	40	0.28	40	No fertilizer
Gregorich et al. (2003)	Arable soil	Top 15 cm	Air-dried	Deionized water	0.45	35	40	0.4	45	Crop rotation + manure
Gregorich et al. (2003)	Arable soil	Top 15 cm	Air-dried	Deionized water	0.45	35	40	0.4	50	Crop rotation + inorganic fertilizer
Boyer and Groffman (1996)	Forest soil	10 cm	Moist soil	Nanopure water	NM (Whatman GF/F)	20	14	0.2	21	Dw estimated
Boyer and Groffman (1996)	Arable soil	10 cm	Moist soil	Nanopure water	NM (Whatman GF/F)	20	14	0.4	26	Dw estimated
Boyer and Groffman (1996)	Forest soil	30 cm	Moist soil	Nanopure water	NM (Whatman GF/F)	20	14	0.1	25	Dw estimated
Boyer and Groffman (1996)	Arable soil	30 cm	Moist soil	Nanopure water	NM (Whatman GF/F)	20	14	0.36	17	Dw estimated

Power and				Nanonura	NM					
Groffman (1996)	Forest soil	50 cm	Moist soil	water	(Whatman GF/F)	20	14	0.2	25	Dw estimated
Boyer and Groffman (1996)	Arable soil	50 cm	Moist soil	Nanopure water	NM (Whatman GF/F)	20	14	0.2	11	Dw estimated
Boyer and Groffman (1996)	Forest soil	70 cm	Moist soil	Nanopure water	NM (Whatman GF/F)	20	14	0.1	11	Dw estimated
Boyer and Groffman (1996)	Arable soil	70 cm	Moist soil	Nanopure water	NM (Whatman GF/F)	20	14	0.1	11	Dw estimated
Saviozzi et al. (1994)	Glassland soil	Surface	Air-dried	Distilled water	0.2	ND	ND	0.1	ND	After fire, sediment dw estimated
Saviozzi et al. (1994)	Arable soil	Surface	Air-dried	Distilled water	0.2	ND	ND	0.02	ND	After fire, sediment dw estimated
Vergnoux et al. (2011)	Forest soil	Top 15 cm	Moist soil	Ultrapure water	0.45	ND	ND	0.13	ND	After fire, sediment dw estimated
Vergnoux et al. (2011)	Forest soil	Top 15 cm	Moist soil	Ultrapure water	0.45	ND	ND	0.07	ND	After fire, sediment dw estimated
Vergnoux et al. (2011)	Forest soil	Top 15 cm	Moist soil	Ultrapure water	0.45	ND	ND	0.1	ND	After fire, sediment dw estimated
Vergnoux et al. (2011)	Forest soil	Top 15 cm	Moist soil	Ultrapure water	0.45	ND	ND	0.2	ND	After fire, sediment dw estimated
Vergnoux et al. (2011)	Forest soil	Top 15 cm	Moist soil	Ultrapure water	0.45	ND	ND	0.2	ND	After fire, sediment dw estimated
Vergnoux et al. (2011)	Forest soil	Top 15 cm	Moist soil	Ultrapure water	0.45	ND	ND	0.2	ND	No fire sediment dw estimated
Wu and Jiang (2016)	Forest soil	0–10 cm	Air dried	Distilled water	0.45	20	90	0.1	30.06	Dw estimated
Wu and Jiang (2016)	Forest soil	0–10 cm	Air dried	Distilled water	0.45	20	90	0.1	41.03	Dw estimated
Wu and Jiang (2016)	Forest soil	0–10 cm	Air dried	Distilled water	0.45	20	90	0.11	24.97	Dw estimated
Wu and Jiang (2016)	Forest soil	0–10 cm	Air dried	Distilled water	0.45	20	90	0.15	38.69	Dw estimated
Wagai and Sollins (2002)	Forest soil	0–8 cm		Deionized water	0.2	26	90	0.05	38.67	Dw estimated
Wagai and Sollins (2002)	Forest soil	0–8 cm		Deionized water	0.2	26	90	0	22.74	Dw estimated
Wagai and Sollins (2002)	Forest soil	0–8 cm		Deionized water	0.2	26	90	0	15.93	Dw estimated
Wagai and Sollins (2002)	Forest soil	0–8 cm		Deionized water	0.2	26	90	0	12.96	Dw estimated

Wagai and Sollins (2002)	Forest soil	0–8 cm		Deionized water	0.2	26	90	0.02	27.36	Dw estimated
Wagai and Sollins (2002)	Forest soil	0–8 cm		Deionized water	0.2	26	90	0.02	23.13	Dw estimated
Wagai and Sollins (2002)	Forest soil	0–8 cm		Deionized water	0.2	26	90	0.01	17.69	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.05	12	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.11	22	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.03	9	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	65–80 cm	No drying	Deionized water	NM	5	90	0.03	36	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	66–80 cm	No drying	Deionized water	NM	5	90	0.17	19	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	67–80 cm	No drying	Deionized water	NM	5	90	0.06	16	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.49	13	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.43	13	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.45	9	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	85–100 cm	No drying	Deionized water	NM	5	90	0.61	10	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	86–100 cm	No drying	Deionized water	NM	5	90	0.52	5	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	87–100 cm	No drying	Deionized water	NM	5	90	1.04	5	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	30–45 cm	No drying	Deionized water	NM	5	90	0.02	12	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.15	5	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	35–50 cm	No drying	Deionized water	NM	5	90	0.14	11	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	87–102 cm	No drying	Deionized water	NM	5	90	0.48	11	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	78–90 cm	No drying	Deionized water	NM	5	90	0.43	8	Dw estimated
Wickland et al. (2018)	Permafrost and seasonally frozen soil	74–89 cm	No drying	Deionized water	NM	5	90	0.16	8	Dw estimated

Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.42	14.17	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.54	12.73	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.32	17.26	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.35	4.15	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.51	13.72	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.31	10.74	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.75	13	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.55	10.62	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.41	15.21	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.46	4.08	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.27	22.07	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.44	9.06	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.39	12.07	Cold extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.36	30.21	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	1.3	23.04	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	1.51	19.33	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.97	14.17	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	1.38	9.91	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	1.38	12.24	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.76	12.1	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	1.7	28.11	Hot extraction

Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	1.65	29.77	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	1.28	19.37	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.95	15.79	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.7	60.73	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.6	14.67	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.68	22.31	Hot extraction
Zhao et al. (2013)	Arable and forest soil	0–15 cm	Air dried	Deionized water	0.45	15	21	0.72	8.18	Hot extraction
Zhao et al. (2012)	Arable and forest soil	0–10 cm	Air dried	Deionized water	0.45			0.45	ND	
Zhao et al. (2012)	Arable and forest soil	0–10 cm	Air dried	Deionized water	0.45			0.44	ND	
Zhao et al. (2012)	Arable and forest soil	0–10 cm	Air dried	Deionized water	0.45			0.38	ND	
Zhao et al. (2012)	Arable and forest soil	0–10 cm	Field moist	Deionized water	0.45			0.18	ND	Dw estimated
Zhao et al. (2012)	Arable and forest soil	0–10 cm	Field moist	Deionized water	0.45			0.24	ND	Dw estimated
Zhao et al. (2012)	Arable and forest soil	0–10 cm	Field moist	Deionized water	0.45			0.16	ND	Dw estimated
(Rizinjirabake et al. 2019)	Soil	0–20 cm	Oven dried	Distilled water	0.45			1.68	ND	Natural forest
(Rizinjirabake et al. 2019)	Soil	0–20 cm	Oven dried	Distilled water	0.45			1.21	ND	Tree plantation
(Rizinjirabake et al. 2019)	Soil	0–20 cm	Oven dried	Distilled water	0.45			1.15	ND	Tea plantation
(Rizinjirabake et al. 2019)	Soil	0–20 cm	Oven dried	Distilled water	0.45			0.75	ND	Cropland soil
Guigue et al. (2014)	Woodland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.16	17.48	Dystric Andosol
Guigue et al. (2014)	Forest soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.34	18.18	Entic Podzol
Guigue et al. (2014)	Pastureland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.24	20.28	Dystric Cambisol
Guigue et al. (2014)	Pastureland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.36	18.18	Gleyic Luvisol

Guigue et al. (2014)	Arable soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.25	42.66	Eutric Cambisol
Guigue et al. (2014)	Woodland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.04	39.16	Dystric Andosol
Guigue et al. (2014)	Forest soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.09	30.77	Entic Podzol
Guigue et al. (2014)	Pastureland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.07	42.66	Dystric Cambisol
Guigue et al. (2014)	Pastureland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.16	23.08	Gleyic Luvisol
Guigue et al. (2014)	Arable soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.03	16.08	Eutric Cambisol
Guigue et al. (2014)	Woodland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.06	41.26	Dystric Andosol
Guigue et al. (2014)	Forest soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.12	22.38	Entic Podzol
Guigue et al. (2014)	Pastureland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.08	39.86	Dystric Cambisol
Guigue et al. (2014)	Pastureland soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.16	26.57	Gleyic Luvisol
Guigue et al. (2014)	Arable soil	A-horizon	Air dried	Ultrapure water	0.22	21	48	0.02	32.17	Eutric Cambisol

Table S5. The con	tent of sediment WEOM (mean \pm SE, range: 0.29 \pm 0.02, 0.01–0.5 mg C/g dr	y sediment) in dry sediments from rivers.
Contenido de WE	DM del sedimento (media \pm SE, rango: 0.29 \pm 0.02, 0.01–0.5 mg C/g sediment	to seco) en sedimentos secos de ríos.

Reference	System	Name, location	Sed/soil	Drying	Extractant	[WEOC] Mean	Unit	Comment
Dong et al. (2020)	River	Yunxi River	Sediment	Air-dried	Milli-Q water	0.5	mg C/g sed	
Dong et al. (2020)	River	Yunxi River	Sediment	Air-dried	Milli-Q water	0.4	mg C/g sed	
Dong et al. (2020)	River	Yunxi River	Sediment	Air-dried	Milli-Q water	0.3	mg C/g sed	
Dong et al. (2020)	River	Yunxi River	Sediment	Air-dried	Milli-Q water	0.5	mg C/g sed	
Dong et al. (2020)	River	Taoyuan River	Sediment	Air-dried	Milli-Q water	0.3	mg C/g sed	
Dong et al. (2020)	River	Taoyuan River	Sediment	Air-dried	Milli-Q water	0.2	mg C/g sed	
Dong et al. (2020)	River	Taoyuan River	Sediment	Air-dried	Milli-Q water	0.1	mg C/g sed	
Dong et al. (2020)	River	Taoyuan River	Sediment	Air-dried	Milli-Q water	0.2	mg C/g sed	
Dong et al. (2020)	River	Jiaolai River	Sediment	Air-dried	Milli-Q water	0.4	mg C/g sed	
Dong et al. (2020)	River	Jiaolai River	Sediment	Air-dried	Milli-Q water	0.4	mg C/g sed	
Dong et al. (2020)	River	Jiaolai River	Sediment	Air-dried	Milli-Q water	0.2	mg C/g sed	
Dong et al. (2020)	River	Jiaolai River	Sediment	Air-dried	Milli-Q water	0.2	mg C/g sed	
Fox et al. (2017)	River	Colorado River, US	Sediment	Air-dried	Milli-Q water	0.04	mg C/g sed	
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.2	mg C/g sed	0–10 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.3	mg C/g sed	0–10 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.2	mg C/g sed	0–10 cm

Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.25	mg C/g sed	0–10 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.2	mg C/g sed	0–10 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.45	mg C/g sed	0–10 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.4	mg C/g sed	0–10 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.45	mg C/g sed	0–10 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.3	mg C/g sed	10–20 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.3	mg C/g sed	10–20 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.3	mg C/g sed	10–20 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.16	mg C/g sed	10–20 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.5	mg C/g sed	10–20 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.45	mg C/g sed	10–20 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.3	mg C/g sed	10–20 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.25	mg C/g sed	20– 30 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.25	mg C/g sed	20– 30 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.25	mg C/g sed	20– 30 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.3	mg C/g sed	20– 30 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.4	mg C/g sed	20– 30 cm
Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.5	mg C/g sed	20– 30 cm

Zhu et al. (2017)	River	Hao River, China	Sediment	Air-dried	Distilled water	0.3	mg C/g sed	20– 30 cm
Han et al. (2021)	River	Yangtze River, China	Sediment	Freeze-dried	Ultrapure water	0.01	mg C/g sed	
Han et al. (2021)	River	Yangtze River, China	Sediment	Freeze-dried	Ultrapure water	0.01	mg C/g sed	

Table S6 Respiration rate of bulk OM in dry soils of wetlands (mean \pm SE, range: 3.74 ± 0.39 , $0.30-28.16 \mu g O_2 g^{-1}$ dry soil h⁻¹). *Ratio de respiración de la OM en peso seco en suelos secos de humedales (media* \pm SE, rango: 3.74 ± 0.39 , $0.30-28.16 \mu g O_2 g^{-1}$ suelo seco h⁻¹)

Reference	System	Incubation Temp (°C)	Mean resp. rate	Unit	Comment
Magnusson (1993)	Wetland (fen)	16	10.0448	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	
Magnusson (1993)	Wetland (fen)	16	8.5337	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	
Magnusson (1993)	Wetland (fen)	16	9.0009	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	
Magnusson (1993)	Wetland (fen)	16	7.0372	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	
Magnusson (1993)	Wetland (fen)	16	7.7453	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	1.2166666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g O_2 g^{-1} dry soil h^{-1}$	Natural moisture

Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.304166667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.520833333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.825	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.2166666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.825	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	18.25	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.520833333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.520833333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.2166666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	14.90416667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	12.775	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	6.6916666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	5.170833333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	13.38333333	$\mu g \ O_2 \ g^{-1} dry \ soil \ h^{-1}$	Natural moisture

Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	9.429166667	$\mu g \ O_2 \ g^{-1} dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	6.3875	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	6.691666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	6.995833333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	7.604166667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	7.3	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	4.5625	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Natural moisture
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.304166667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	0.608333333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	1.2166666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	5	1.2166666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.520833333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.825	$\mu g \ O_2 \ g^{-1} dry \ soil \ h^{-1}$	Flooded

Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.9125	$\mu g \ O_2 \ g^{-1} dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.304166667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.9125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.2166666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.2166666667	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	1.2166666667	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.304166667	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.304166667	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	10	0.304166667	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	3.65	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	3.0416666667	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	1.520833333	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	1.520833333	$\mu g \ O_2 \ g^{-1} dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	4.258333333	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	3.345833333	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	2.129166667	$\mu g \ O_2 \ g^{-1} dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	1.2166666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	6.6916666667	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	3.65	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$	Flooded
Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	3.345833333	$\mu g O_2 g^{-1} dry \text{ soil } h^{-1}$	Flooded

Szafranek-Nakonieczna and Stêpniewska (2014)	Wetland (moor)	20	1.825	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1} \ Flooded$
Brouns et al. (2014)	Wetland (bog)	20	28.16	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	10	2.3725	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Tropical Wetland	10	3.1901	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Tropical Wetland	10	3.6135	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	10	3.285	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	10	2.3725	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	20	4.015	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	20	5.5334	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	20	5.1976	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	20	5.0808	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	20	3.3142	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	30	7.2343	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	30	8.1833	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	30	8.6651	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	30	7.3876	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Inglett et al. (2012)	Wetland	30	10.001	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	25	2.001096491	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	25	3.842105263	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	25	6.963815789	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	25	5.603070175	$\mu g O_2 g^{-1} dry \text{ soil } h^{-1}$

Duval and Radu (2018)	Wetland (fen)	25	7.283991228	$\mu g \; O_2 \; g^{-1} dry \; soil \; h^{-1}$
Duval and Radu (2018)	Wetland (fen)	25	4.882675439	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	15	1.584201389	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	15	3.089192708	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	15	3.247612847	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	15	3.564453125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	15	5.703125	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	15	3.406032986	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	5	1.280701754	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	5	3.201754386	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	5	2.721491228	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	5	1.520833333	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Duval and Radu (2018)	Wetland (fen)	5	2.801535088	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Turetsky and Ripley (2005)	Wetland (fen)	NM	2.32	$\mu g \ O_2 \ g^{-1} \ dry \ soil \ h^{-1}$
Glatzel et al. (2004)	Wetland	NM	3.65	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$
Glatzel et al. (2004)	Wetland	NM	4.234	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$

Table S7 Respiration rate of bulk sediment OM (mean \pm SE, range: 1.43 \pm 0.31, 0–11.39 µg O₂ g⁻¹ dry sediment h⁻¹) in dry sediments of perennial and intermittent rivers and ephemeral streams (IRES). *Ratio de respiración de de la OM en peso seco de sedimento (media* \pm SE, rango: 1.43 \pm 0.31, 0–11.39 µg O₂ g⁻¹ sedimento seco h⁻¹) en sedimentos secos de ríos perennes e intermitentes y arroyos efímeros (IRES).

Reference	System	Location	Mean	Unit	Comment
Harvey et al. (2011)	Perennial stream	Northern California	5.92	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel
Harvey et al. (2011)	Perennial stream	Northern California	1.48	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Pusch 1996)	Perennial stream	Southern Germany, mountain stream	0.06	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand-gravel
Pusch (1996)	Perennial stream	Austria and Pyrenees	1.5	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand-gravel
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	0.16	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	1.06	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	1.06	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	0.89	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	1.64	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	2.62	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	0.5	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Battin et al. (1999)	Perennial stream	Austria and Pyrenees	1.04	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
C Raft et al. (2002)	Perennial stream	North-western Montana	0.01	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel
C Raft et al. (2002)	Perennial stream	North-western Montana	0.43	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel

Crenshaw et al. (2002)	Perennial stream	North Carolina	0.03	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel
Crenshaw et al. (2002)	Perennial stream	North Carolina	0.04	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Gravel
Findlay and Sinsabaugh (2003)	Perennial stream	NM	0.02	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	
Findlay and Sinsabaugh (2003)	Perennial stream	NM	0.03	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	
Findlay and Sinsabaugh (2003)	Perennial stream	NM	0.04	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	
Jones (1995)	Perennial stream	Sonoran desert, Arizona	0	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	
Logue et al. (2004)	Perennial stream	Switzerland	0.6	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	
Logue et al. (2004)	Perennial stream	Switzerland	0.8	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	
Logue et al. (2004)	Perennial stream	Switzerland	0.56	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	
Logue et al. (2004)	Perennial stream	Switzerland	0.96	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	
Mermillod-Blondin et al. (2005)	Perennial stream	NM	0	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Pusch and Schwoerbel (1994)	Perennial stream	Germany	0.08	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Gravel
Pusch and Schwoerbel (1994)	Perennial stream	Germany	1.26	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel
Uehlinger et al. (2002)	Perennial stream	Sonoran desert, Arizona	0	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Uehlinger et al. (2002)	Perennial stream	Sonoran desert, Arizona	0	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Uehlinger et al. (2002)	Perennial stream	Sonoran desert, Arizona	0	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Uehlinger et al. (2002)	Perennial stream	Sonoran desert, Arizona	0	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand

Wilczek et al. (2004)	Perennial stream	Germany	1	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel
Wilczek et al. (2004)	Perennial stream	Germany	3.81	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Gravel
Mendoza-Lera and Mutz (2013)	Perennial stream	NM	2.28	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sand
Mendoza-Lera and Mutz (2013)	Perennial stream	NM	1	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Gerull et al. (2011)	Perennial stream	Germany	0.6	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sand
Gerull et al. (2011)	Perennial stream	Germany	5.89	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Sand
Ingendahl et al. (2009)	Perennial stream	Germany	0	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sandy loam
Ingendahl et al. (2009)	Perennial stream	Germany	5.37	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sandy loam
Foulquier et al. (2010)	Perennial stream	France (aquifer)	0	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel
Foulquier et al. (2010)	Perennial stream	France (aquifer)	0.36	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Gravel
Mendoza-Lera et al. (2017)	Perennial stream	NM	1	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Gravel/sand and gravel+ sand
Mendoza-Lera et al. (2017)	Perennial stream	NM	4.99	$\mu g \ O_2 \ g^{-1} \ dry \ sed \ h^{-1}$	Gravel/sand and gravel+ sand
Gerull et al. (2012)	Perennial stream	NM	0.49	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sandy loam
Gerull et al. (2012)	Perennial stream	NM	2.99	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sandy loam
Mendoza-Lera et al. (2017)	Perennial stream	Germany	2.4	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sand
Mendoza-Lera et al. (2017)	Perennial stream	Germany	11.39	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	Sand
von Schiller et al. (2019)	IRES	Global	2.3	$\mu g \; O_2 \; g^{-1} \; dry \; sed \; h^{-1}$	

References for Table S3–7

- Battin, J. T., Butturini, A., & Sabater, F. (1999). Immobilization and metabolism of dissolved organic carbon by natural sediment biofilms in a Mediterranean and temperate stream. *Aquatic Microbial Ecology*, 19, 297–305. DOI: 10.3354/ame019297
- Boyer, J. N., & Groffman, P. M. (1996). Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. *Soil Biology & Biochemistry*, 28, 783–790. DOI: 10.1016/0038-0717(96)00015-6
- Brouns, K., Verhoeven, J. T. A., & Hefting, M. M. (2014). The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows: The roles of peat type and land use. *Journal of Environmental Management*, 143, 44–53. DOI: 10.1016/j.jenvman.2014.04.009
- Craft, J. A., Stanford, J. A., & Pusch, M. (2002). Microbial respiration within a floodplain aquifer of a large gravel-bed river. *Freshwater Biology*, 47, 251–261. DOI: 10.1046/j.1365-2427.2002.00803.x
- Chantigny, M. H., Harrison-Kirk, T., Curtin, D., & Beare, M. (2014). Temperature and duration of extraction affect the biochemical composition of soil water-extractable organic matter. *Soil Biology & Biochemistry*, 75,161–166. DOI: 10.1016/j.soilbio.2014.04.011
- Crenshaw, C. L., Valett, H. M., & Webster, J. R. (2002). Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments. *Freshwater Biology*, 47, 1820–1831. DOI: 10.1046/j.1365-2427.2002.00928.x
- Dong, Y., Li, Y., Kong, F., Zhang, J., & Xi, M. (2020). Source, structural characteristics and ecological indication of dissolved organic matter extracted from sediments in the primary tributaries of the Dagu River. *Ecological Indicators*, 109, 105776. DOI: 10.1016/j.ecolind.2019.105776
- Duval, T. P., & Radu, D. D. (2018). Effect of temperature and soil organic matter quality on greenhouse-gas production from temperate poor and rich fen soils. *Ecological Engineering*, 114, 66–75. DOI: 10.1016/j.ecoleng.2017.05.011
- Findlay, S., & Sinsabaugh, L. R. (2003). Response of hyporheic biofilm metabolism and community structure to nitrogen amendments. Aquatic *Microbial Ecology*, 33, 127–136. DOI: 10.3354/ame033127
- Foulquier, A., Malard, F., Mermillod-Blondin, F., Datry, T., Simon, L., Mantuelle, B., & Gibert, J. (2010). Vertical change in dissolved organic carbon and oxygen at the water table region of an aquifer recharged with stormwater: biological uptake or mixing? *Biogeochemistry*, 99, 31– 47. DOI: 10.1007/s10533-009-9388-7
- Fox, P. M., Nico, P. S., Tfaily, M. M., Heckman, K., & Davis, J. A. (2017). Characterization of natural organic matter in low-carbon sediments: Extraction and analytical approaches. *Organic Geochemistry*, 114, 12–22. DO: 10.1016/j.orggeochem.2017.08.009
- Gerull, L., Frossard, A., Gessner, M. O., & Mutz, M. (2011). Variability of heterotrophic metabolism in small stream corridors of an early successional watershed. *Journal of Geophysical Research*, 116, G02012. DOI: 10.1029/2010JG001516
- Gerull, L., Frossard, A., Gessner, M. O., & Mutz, M. (2012). Effects of shallow and deep sediment disturbance on whole-stream metabolism in experimental sand-bed flumes. *Hydrobiologia*, 683, 297–310. DOI: 10.1007/s10750-011-0968-x

- Glatzel, S., Basiliko, N., & Moore, T. (2004). Carbon dioxide and methane production potentials of peats from natural and harvested sites, eastern Québec, Canada. *Wetlands*, 24, 261–267. DOI: 10.1672/0277-5212(2004)024[0261:CDAMPP]2.0.CO;2
- Gregorich, E. G., Beare, M. H., Stoklas, U., & St-Georges, P. (2003). Biodegradability of soluble organic matter in maize-cropped soils. In: Geoderma. Elsevier, pp. 237–252
- Gu, N., Song, Q., Yang, X., Yu, X., Li, X, & Li, G. (2020). Fluorescence characteristics and biodegradability of dissolved organic matter (DOM) leached from non-point sources in southeastern China. *Environmental Pollution*, 258, 113807. DOI: 10.1016/j.envpol.2019.113807
- Guigue, J., Mathieu, O., Lévêque, J., Laffont, M. R., Maron, P. A., Navarro, N.,... Chateau, C. (2014). A comparison of extraction procedures for water-extractable organic matter in soils. *European Journal of Soil Science*, 65, 520–530. DOI: 10.1111/ejss.12156
- Han, L., Wang, Y., Xu, Y., Wang, Y., Zheng, Y., & Wu, J. (2021). Water- and base-extractable organic matter in sediments from Lower Yangtze River–Estuary–East China Sea Continuum: Insight into accumulation of organic carbon in the river-dominated margin. *Frontiers in Marine Science*, 8, 617241. DOI: 10.3389/fmars.2021.617241
- Harvey, B. N., Johnson, M. L., Kiernan, J. D., & Green, P. G. (2011). Net dissolved inorganic nitrogen production in hyporheic mesocosms with contrasting sediment size distributions. *Hydrobiologia*, 658, 343–352. DOI: 10.1007/s10750-010-0504-4
- Heslop, J., Anthony, K. W., & Zhang, M. (2017). Utilizing pyrolysis GC-MS to characterize organic matter quality in relation to methane production in a thermokarst lake sediment core. *Organic Geochemistry*, 103, 43–50. DOI: 10.1016/j.orggeochem.2016.10.013
- Ingendahl, D., Borchardt, D., Saenger, N., & Reichert, P. (2009). Vertical hydraulic exchange and the contribution of hyporheic community respiration to whole ecosystem respiration in the River Lahn (Germany). *Aquatic Sciences*, 71, 399–410. DOI: 10.1007/s00027-009-0116-0
- Inglett, K. S., Inglett, P. W., Reddy, K. R., & Osborne, T. Z. (2012). Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. *Biogeochemistry*, 108, 77–90. DOI: 10.1007/s10533-011-9573-3
- Jones, J. B. (1995). Factors controlling hyporheic respiration in a desert stream. *Freshwater Biology*, 34, 91–99. DOI: 10.1111/j.1365-2427.1995.tb00426.x
- Li, Y., Wang, S., Zhang, L., Zhao, H., Jiao, L., Zhao, Y, & He, X. (2014). Composition and spectroscopic characteristics of dissolved organic matter extracted from the sediment of Erhai Lake in China. *Journal of Soils and Sediments*, 14, 1599–1611. DOI: 10.1007/s11368-014-0916-2
- Li, Y., Wang, S., & Zhang, L. (2015). Composition, source characteristic and indication of eutrophication of dissolved organic matter in the sediments of Erhai Lake. *Environmental Earth Sciences*, 74, 3739–3751. DOI: 10.1007/s12665-014-3964-4
- Li, Y., Zhang, L., Wang, S., Zhao, H., & Zhang, R. (2016). Composition, structural characteristics and indication of water quality of dissolved organic matter in Dongting Lake sediments. *Ecological Engineering*, 97, 370–380. DOI: 10.1016/j.ecoleng.2016.10.035
- Liu, H., Wu, Y., Ai, Z., Zhang, J., Zhang, C., Xue, S., & Liu, G. (2019). Effects of the interaction between temperature and revegetation on the microbial degradation of soil dissolved organic matter (DOM) A DOM incubation experiment. *Geoderma*, 337, 812–824. DOI: 10.1016/j.geoderma.2018.10.041

- Liu, J., Liang, J., Bravo, A. G., Wei, S., Yang, C., Wang, D., & Jiang, T. (2021). Anaerobic and aerobic biodegradation of soil-extracted dissolved organic matter from the water-level-fluctuation zone of the Three Gorges Reservoir region, China. *Science of the Total Environment*, 764, 142857. DOI: 10.1016/j.scitotenv.2020.142857
- Logue, J. B., Robinson, C. T., Meier, C., & van der Meer, J. R. (2004). Relationship between sediment organic matter, bacteria composition, and the ecosystem metabolism of alpine streams. *Limnology and Oceanography*, 49, 2001–2010. DOI: 10.4319/lo.2004.49.6.2001
- Magnusson, T. (1993). Carbon dioxide and methane formation in forest mineral and peat soils during aerobic and anaerobic incubations. *Soil Biology and Biogeochemistry*, 25, 877–883. DOI: 10.1016/0038-0717(93)90090-X
- Mendoza-Lera, C., Frossard, A., Knie, M., Federlein, L. L., Gessner, M. O., & Mutz, M. (2017). Importance of advective mass transfer and sediment surface area for streambed microbial communities. *Freshwater Biology*, 62, 133–145. DOI: 10.1111/fwb.12856
- Mendoza-Lera, C., & Mutz, M. (2013). Microbial activity and sediment disturbance modulate the vertical water flux in sandy sediments. *Freshwater Science*, 32, 26–38. DOI: 10.1899/11-165.1
- Mermillod-Blondin, F., Mauclaire, L., & Montuelle, B. (2005). Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments. *Water Research*, 39, 1687–1698. DOI: 10.1016/j.watres.2005.02.003
- Pusch, M. (1996). The metabolism of organic matter in hyporheic zone of a mountain stream, and its spatial distribution. *Hydrobiologia*, 323, 107–118. DOI: 10.1007/BF00017588
- Pusch, M., & Schwoerbel, J. (1994). Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Archiv fur *Hydrobiologia*, 130, 35–52. DOI: 10.1016/j.scitotenv.2005.01.043
- Rizinjirabake, F., Tenenbaum, D. E., & Pilesjö, P. (2019). Sources of soil dissolved organic carbon in a mixed agricultural and forested watershed in Rwanda. *Catena*, 181, 104085. DOI: 10.1016/j.catena.2019.104085
- Saviozzi, A., Levi-Minzi, R., & Riffaldi, R. (1994). The effect of forty years of continuous corn cropping on soil organic matter characteristics. *Plant and Soil*,160, 139–145. ISSN: 0032-079X
- Szafranek-Nakonieczna, A,. & Stêpniewska, Z. (2014). Aerobic and anaerobic respiration in profiles of Polesie Lubelskie peatlands. *International Agrophysics*, 28, 219–229. DOI: 10.2478/intag-2014-0011
- Turetsky, M. R., & Ripley, S. (2005). Decomposition in extreme-rich fens of Boreal Alberta, Canada. *Soil Science Society of America Journal* 69, 1856–1860. DOI: 10.2136/sssaj2003.0084
- Uehlinger, U., Naegeli, M., & Fisher, S. G. (2002). A heterotrophic desert stream? The role of sediment stability. Western North American Naturalist, 64, 466–473. ISSN: 1527-0904
- Vergnoux, A., di Rocco, R., Domeizel, M., Guiliano, M., Doumeng, P., & Théraulaz, F. (2011). Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV-vis and fluorescence spectroscopy approaches. *Geoderma*, 160, 434–443. DOI: 10.1016/j.geoderma.2010.10.014

- von Schiller, D., Datry, T., Corti, R., Foulquier, A. K., Tockner, K., Marcé, R.,... García-Baquero, G. (2019). Sediment respiration pulses in intermittent rivers and ephemeral streams. *Global Biogeochemical Cycles*, 33, 1251–1263. DOI: 10.1029/2019GB006276
- Wagai, R., & Sollins, P. (2002). Biodegradation and regeneration of water-soluble carbon in a forest soil: Leaching column study. *Biology and Fertility of Soils*, 35, 18–26. DOI: 10.1007/s00374-001-0434-4
- Wang, S., Jiao, L., Yang, S., Jin, X., Liang, H., & Wu, F. (2011). Organic matter compositions and DOM release from the sediments of the shallow lakes in the middle and lower reaches of Yangtze River region, China. *Applied Geochemistry*, 26, 1458–1463. DOI: 10.1016/j.apgeochem.2011.05.019
- Wang, W., Chen, J., Wang, S., & Li, W. (2022). Differences in the composition, source, and stability of suspended particulate matter and sediment organic matter in Hulun Lake, China. *Environmental Science and Pollution Research*, 30, 27163-27174. DOI: 10.1007/s11356-022-24096-0
- Wickland, K. P., Waldrop, M. P., Aiken, G. R., Koch, J. C., Jorgenson, M. T., & Striegl, R. G. (2018). Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. *Environmental Research Letters*, 13, 065011. DOI: 10.1088/1748-9326/aac4ad
- Wilczek, S., Fischer, H., Brunke, M, & Pusch, M. T. (2004). Microbial activity within as subaqueous dune in a large lowland (River Elbe, Germany). *Aquatic Microbial Ecology*, 36, 83–97. DOI: 10.3354/ame036083
- Wu, Y., & Jiang, Y. (2016). A case study on the method-induced difference in the chemical properties and biodegradability of soil water extractable organic carbon of a granitic forest soil. *Science of the Total Environment*, 565, 656–662. DOI: 10.1016/j.scitotenv.2016.04.201
- Xu, P., Zhu, J., Fu, Q., Chen, J., Hu, H., & Huang, Q. (2018). Structure and biodegradability of dissolved organic matter from Ultisol treated with long-term fertilizations. *Journal of Soils and Sediments*, 18, 1865–1872. DOI: 10.1007/s11368-018-1944-0
- Zhao, A., Zhang, M., & He, Z. (2013). Spectroscopic characteristics and biodegradability of cold and hot water-extractable soil organic matter under different land uses in subarctic Alaska. *Communication in Soil Science and Plant Analysis*, 44, 3030–3048. DOI: 10.1080/00103624.2013.829086
- Zhao, A., Zhang, M., & He, Z. (2012). Characteristics of soil water-soluble organic C and N under different land uses in Alaska. *Soil Science*, 177, 683–694. DOI: 10.1097/SS.0b013e31827e1fa8
- Zhu, T., Duan, P., He, J., Zhao, M., & Li, M (2017). Sources, composition, and spectroscopic characteristics of dissolved organic matter extracted from sediments in an anthropogenic-impacted river in Southeastern China. *Environmental Science and Pollution Research*, 24, 25431–25440. DOI:10.1007/s11356-017-0224-7

Figures

Figure S1. Temporal changes in mean sediment size during sediment exposure time. The line and shaded area represent the mean and 95 % confidence interval of the GAMMs; each point represents the average of three sediment samples collected for each sampling date at each site; edf is effective degrees of freedom; DE is deviance explained (%); *p*-value is significant and shown in bold. *Cambios temporales en el tamaño medio del sedimento durante el tiempo de exposición del sedimento. Las líneas y espacios sombreados representan, respectivamente, la media y un intervalo de confianza del 95 % de los modelos aditivos generalizados mixtos; cada punto representa la media de tres muestras de sedimentos, recogidas en cada punto para cada día; edf hace referencia a los grados de libertad efectivos; DE a la desviación explicada (%); en negrita se muestra el p-valor significativo.*

Figure S2. Temporal changes in the accumulated weekly precipitation for each sampling date (a) and mean daily temperature registered by the meteorological station of Artikutza on the sampling date (b). *Gráficos de líneas de los cambios temporales de la precipitación semanal acumulada para cada día de muestreo (a) y temperatura registrada por la estación meteorológica de Artikutza en el día de muestreo.*