Interspecies interactions mediated by conductive minerals in the sediments of the Iron rich Meromictic Lake La Cruz, Spain

Amelia-Elena Rotaru¹,*, Nicole R. Posth², Carolin R. Löscher¹,³, Maria R. Miracle⁴,†, Eduardo Vicente⁴, Raymond P. Cox⁵, Jennifer Thompson⁶, Simon W. Poulton⁶ and Bo Thamdrup¹

¹ Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, DK.
² Department of Geosciences and Natural Resource Management (IGN), Geology, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, DK.
³ Danish Institute for Advanced Science, University of Southern Denmark, Campusvej 55, 5230 Odense, DK.
⁴ Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, 46980 Paterna, Spain.
⁵ Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, DK.
⁶ School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
† Deceased. This article is in memoriam of Professor Maria R. Miracle.

* Corresponding author: arotaru@biology.sdu.dk

Received: 09/08/18 Accepted: 22/11/18

ABSTRACT

Interspecies interactions mediated by conductive minerals in the sediments of the Iron rich Meromictic Lake La Cruz, Spain

Lake La Cruz is considered a biogeochemical analogue to early Earth marine environments because its water column is depleted in sulfate, but rich in methane and iron, similar to conditions envisaged for much of the Precambrian. Here we show that conductive particles drove the metabolic coupling between electroactive microbial clades from this environment. The anoxic sediment of Lake La Cruz was rich in biogeochemically ‘reactive’ iron minerals, and harbored known electroactive species such as Geobacter and Methanothrix, in addition to groups never linked to an electroactive lifestyle. Slurry incubations on various substrates in the presence of conductive particles showed 2 to 4 times higher methanogenic activity, as compared to incubations with non-conductive glass beads or without added particles. In the absence of conductive particles, all tested substrates were metabolized to acetate, which accumulated above 8 mM depending on substrate (8±0.6 to 11.7±1.2 mM). Only by enabling syntrophic acetate oxidation with conductive minerals could we prevent acetate accumulation. Acetate oxidation conductively coupled to methanogenic activity had a stoichiometric recovery of 70% and could be maintained in subsequent transfers only if amended with conductive particles. Mud-free enrichments without conductive particles ceased any metabolic activity after the second transfer. Conductive particles preserved a consortium of Youngiibacter-Methanothrix, whereas without conductive particles Youngiibacter spp. died off. Syntrophic consortia from this early Earth analogue environment only survived in the presence of conductive particles inferring that minerals may have arbitrated the earliest interspecies associations.

Key words: Methanothrix, Geobacter, Youngiibacter, magnetite, conductive particles, granular activated carbon, direct interspecies electron transfer, mineral mediated syntrophy, iron meromictic lake

RESUMEN

Interacciones interespecíficas mediadas por minerales conductivos en el sedimento del Lago La Cruz (España), un lago meromictico rico en hierro

La laguna de La Cruz puede considerarse como un análogo biogeoquímico de los ambientes marinos en la Tierra primitiva, porque su columna de agua, muy escasa en sulfato pero rica en metano y hierro, presenta condiciones similares a estos ambientes en el Precámbrico. En este ambiente encontramos que partículas conductivas establecen un acoplamiento metabólico...
entre clados microbianos electroactivos. Demostraremos que el sedimento anóxico de la laguna de La Cruz, rico en minerales de hierro biogeocuñamamente “reactivos”, alberga conocidas especies electroactivas tales como Geobacter y Methanothrix, además de otros grupos microbianos que no han sido previamente asociados con un estilo de vida electroactivo. Las incubaciones de lodo en varios sustratos realizadas en presencia de partículas conductivas tuvieron como resultado una actividad metanogénica de dos a cuatro veces mayor, comparadas con las incubaciones con microperlas de vidrio no conductivas o sin partículas adicionadas. En ausencia de partículas conductivas, todos los sustratos probados fueron metabolizados a acetato, que se acumulaba hasta una concentración de hasta aproximadamente 8 mM dependiendo del sustrato (8±0.6 to 11.7±1.2 mM). Sólo la adición de mineral conductivo a los lodos de la laguna de La Cruz hacía posible la oxidación del acetato, impidiendo su acumulación. La oxidación del acetato acoplada a una alta actividad metanogénica tuvo una recuperación estequiométrica del 70 % y pudo mantenerse en sucesivos enriquecimientos libres de sedimento solo si estos se adicionaban con minerales conductivos. Por el contrario, enriquecimientos libres de sedimento y sin partículas conductivas cesaron cualquier actividad metabólica en la segunda transferencia de la serie. Las partículas conductivas conservaron la existencia del consorcio Youngiibacter-Methanothrix, mientras que Youngiibacter sp. muere y desaparece en ausencia de las partículas conductivas. Consorcios sintróficos de este ambiente análogo al de la Tierra primitiva sólo sobrevivieron en presencia de partículas conductivas infiltrando que los minerales pueden haber mediado en las asociaciones inter específicas más primitivas.

Palabras clave: Methanothrix, Geobacter, Youngiibacter, magnetita, partículas conductivas, carbón activo granulado, transferencia directa de electrones interspecifica, sintrofia con mediación mineral, lago meromictico ferruginoso

INTRODUCTION

It has been proposed that eukaryotic life arose from syntrophic interactions between Deltaproteobacteria and methanogenic archaea (Moreira & Lopez-Garcia, 1998; López-Garcia & Moreira, 1999; Martin & Russell, 2003) in the anoxic and ferruginous (Fe-rich) early Archaean ocean (Crowe et al., 2008). Similar conditions exist today in the anoxic deeper waters of some lakes (Crowe et al. 2008; Bura-Nakic et al., 2009; Llirós et al., 2015), including Lake La Cruz, Spain (Walter et al., 2014; Camacho et al., 2017). Most studies of these environments have focused on the phototrophic and methanotrophic communities in the water column, yet little attention has been given to either the methanogenic community buried in the sediments or the possible impact of iron-minerals on their physiology. Only recently, have researchers investigated the methanogenic community from Lake Matano, Indonesia which displayed high methanogenic rates when spiked with the iron-oxide, goethite (Bray et al., 2017). However, the possibility of a mineral-mediated syntrophic interaction was not assessed.

Generally, syntrophic associations are carried out indirectly, in which case electron transfer between partners is assisted by diffusible chemicals (H₂, formate, shuttles). These classical syntrophic interactions require a bacterium and a methanogenic archaeon as syntrophic partner. The bacterium oxidizes complex organics to reduced compounds (i.e. H₂), that are then retrieved by the methanogenic archaeon in order to reduce CO₂ to methane (Shrestha & Rotaru, 2014). Recent studies have shown that, sometimes, interspecies electron transfer does not require a diffusible chemical carrier. In the absence of a diffusible electron carrier, interspecies electron transfer could occur via conductive particles (magnetite, char, pyrite) (Liu et al., 2012; Chen et al., 2014; Liu et al., 2015; Kato & Igarashi, 2018; Wang et al., 2018) or directly by forging electric connections via a self-assembled extracellular network of conductive pili and c-type cytochromes between the two syntrophic partners (Summers et al., 2010; Rotaru et al., 2014b, 2014a). The later is known as direct interspecies electron transfer (DIET). DIET was shown to be accelerated by conductive materials possibly because cells save energy by pausing the production of their own conductive extracellular network (Liu et al., 2015; Wang et al., 2018). Consequently, mineral-mediated syntrophy is energetically more favorable than the usual syntrophic associations.

It has been proposed that Fe-minerals such as pyrite helped nucleate the membranes of the earliest cells (Wächtershäuser, 1988a; Russell et al., 1994). Many membrane bound proteins involved in electron transfer through the membranes of present day cells contain FeS centers.
(i.e. ferredoxins). It is therefore likely that some of the earliest FeS proteins might have played a role in electron transfer between cells.

It has been speculated that conductive-minerals also mediate the interaction between protocells with leaky cell walls present in the mineral-rich Archaean ocean (Lane & Martin, 2012). Interactions between cells with different metabolisms are thought to be at the origin of eukaryogenesis, as such cells compartmentalized the functions within the eukaryotic cell (Moreira & Lopez-Garcia, 1998; Lopez-Garcia & Moreira, 1999; Martin & Russell, 2003). In the present study, we investigated the conductive iron-mineral dependency of interspecies interactions between bacteria and methanogens from the sediments of the Fe-rich, stratified Lake La Cruz. Specifically, we were interested in whether reactive Fe minerals would support conductive-mineral mediated interspecies interactions. As the biogeochemical setting of the lake makes it a prime early analogue (Walter et al., 2014, Camacho et al., 2017), we also discuss mineral-mediated syntrophy as a relic of ancestral associations.

MATERIAL AND METHODS

Sampling and incubations

During an expedition at Lake La Cruz in central Spain (Fig. 1) in September 2014, we sampled the lake water and sediment. Lake La Cruz is a permanently stratified, meromictic, doline lake located in a karst region in the Iberian Mountain Range. The lake is circular with a diameter of 122 m. At the time of sampling, the maximum depth was 20 m and the chemocline started at ~12 m depth. Water samples were pumped from depths above,
within, and below the chemocline at the deepest part of the lake from a boat tethered from shore to shore of the lake. The pumping apparatus was designed to withdraw water samples without contact with the atmosphere, and both the apparatus and sampling protocol have previously been described in detail (Miracle et al., 1992; Posth et al., 2017). Samples were gathered and fixed directly on the boat and stored until analysis in the lab.

Three sediment cores were collected from the center and the deepest part of the lake (coordinates: 1° 52’ 24” West; 39° 59’ 16” North, Fig 1) using a sediment corer (Kajak sediment core, KC Denmark). The cores (50 cm length × 7 cm diameter) were sealed without air bubbles as they were pulled up from depth with rubber stoppers immediately inserted to avoid exposure to the atmosphere. Within 24 hours of sampling, the sediment was partitioned into depth intervals, and fixed for biogeochemical and molecular analyses inside an N2-filled inflatable glove bag, as described in detail below.

For downstream incubations, sediment from 0-15 cm depth was sampled and placed in Duran bottles secured with butyl-rubber stoppers, with a headspace of 2 bars N2:CO2 80:20 mix. Samples were stored at 4 °C until later used for incubations.

Slurries were prepared in an N2-filled anaerobic chamber in the laboratory. For these slurries, we used 3 mL cut-off syringes to distribute 2.5 mL of sediment into 20 mL gas-tight vials filled with 7.5 mL of medium, either modified DSM 120 or DSM 334. Modified DSM 120 medium was prepared as described previously (Rotaru et al., 2014b), but with 0.6 g/L NaCl. Three successive ten-fold dilutions of the sediment slurries led to essentially mud-free enrichments in which sediment particles could not be detected visually or by microscopy. Before inoculation, the complete medium, which lacked the substrate and (semi)conductive minerals, was dispensed anaerobically by syringe into sterile degassed vials with or without minerals prepared as below.

Two electrically conductive particle types (granular activated carbon and magnetite) were selected to be tested because they were previously confirmed to stimulate DIET in methanogenic co-cultures (Liu et al., 2012; Zheng et al., 2017). Granular activated carbon (GAC, Sigma Aldrich) had a particle size between 180 and 300 µm diameter and estimated conductivity of circa 1000 S/m (Kastening et al., 1997), and magnetite (Sigma Aldrich) with particles less than 5 µm diameter, and estimated electrical conductivity ranging between 0.1 and 1 S/m (Rochelle & Schwertmann, 2003; Blaney, 2012). Both materials have conductivities similar or higher than the pili that carry out extracellular electron transfer in Geobacter sulfurreducens (5 S/m (Adhikari et al., 2016)). We weighed 0.1 g/L of each material, added to vials, overlaid with 200 µL ultrapure water for wet sterilization, degassed for 3 minutes with N2:CO2 80:20 mix, and autoclaved at 121 °C for 25 min. Controls with non-conductive particles were setup with acid-washed glass beads (less than 105 µm diameter) instead of conductive minerals. Substrates (5 mM glucose, 5 mM sodium butyrate, 10 mM sodium acetate, 10 mM ethanol) were added to media from sterile anoxic 1 M stocks using aseptic and anaerobic techniques. Controls without electron donors were carried out in order to identify whether the organics in the sediment served as substrates for methanogenesis. All incubations were carried out at room temperature (20-23 °C) in triplicate, unless otherwise stated.

Gas samples were withdrawn, stored anaerobically and then analyzed for methane on a Thermo Scientific gas chromatograph (Rotaru et al., 2018). To test for short chain volatile fatty acids (SCVFA) we used high performance liquid chromatography (HPLC) as described elsewhere (Rotaru et al., 2018).

Biogeochemistry

For biogeochemical parameters, we took water column samples at different depths and sampled the sediment obtained via the gravity corer. Geochemical parameters of relevance to this work were methane, soluble ferrous iron, and particulate reactive iron mineral species. We will use the term reactive iron species to refer to oxalate, dithionite and HCl soluble iron oxides and sulfides (Poulton et al., 2004).

Water column methane was sampled from the pumping apparatus through chemically resistant
tubing (VWRs ISO-VERSNIC®) into 20 mL glass, GC vials (Supelco, Sigma-Aldrich). For each sampling depth, 5 mL samples in triplicate were added to GC vials pre-doped with 10 mL 2 N NaOH to retain CO₂ in the liquid phase. The vials were sealed with butyl-viton rubber stoppers, and stored upside down in the dark at 4 °C until analysis.

Sediment methane concentrations were determined from sediment slices extracted every 2 cm in an anoxic glove bag filled with N₂ gas.

Our measurements of available electron acceptors at the sediment boundary layer corroborated previous investigations during summer months at this lake (Miracle et al., 1992; Walter et al., 2014; Camacho et al., 2017) and showed a depletion of sulfate and Fe³⁺ (<10 μM sulfate, <1 μM Fe³⁺) and no detection of oxygen and nitrate. Thus sediments mainly relied on methanogenesis for decomposition of organic matter below the water-sediment boundary. For sedimentary methane determination, sliced sediment was filled into glass GC vials, to which 1 M (2.5 %) NaOH was added in order to stop any additional microbial activity. The vials were capped with butyl-viton stoppers, crimped, and inverted until lab analysis. Sedimentary methane concentrations were determined on a Perkin Elmer GC, as previously described (Rotaru et al., 2018).

Porewater was analysed for reduced iron concentrations at ~2 cm depth resolution after extraction using Rhizos (Rhizosphere; pore size 0.2 μm) inside a glove bag with an N₂-atmosphere. Dissolved Fe²⁺ was determined immediately using the ferrozine assay (Lovley & Phillips, 1987; Viollier et al., 2000).

To determine iron mineral speciation, sediment was subsampled at each 2 cm-depth interval and stored at -20 °C. Reactive iron species (dithionite and HCl soluble iron species) were identified from freeze-dried samples stored at -20 °C by applying a modified sequential iron extraction procedure (Poulton & Canfield, 2005). In the first step, a room temperature 0.5 N HCl extraction was applied to dissolve poorly crystalline iron oxides such as ferrihydrite, surface absorbed Fe²⁺, iron carbonate minerals such as siderite, and acid volatile iron monosulfides (Zegeye et al., 2012). Subsequently, a pH 4.8 sodium dithionite extraction was employed to dissolve crystalline ferric oxide minerals such as goethite and hematite, followed by an oxalate extraction to dissolve magnetite (Poulton & Canfield, 2005). The total concentration of iron dissolved in each operationally defined extraction phase was determined by flame atomic absorption spectroscopy (AAS). For the 0.5 N HCl extraction, dissolved Fe²⁺ was also measured immediately via the ferrozine assay (Lovley & Phillips, 1987). Extraction of this Fe²⁺ from the total Fe determined for this extraction by AAS gave the Fe³⁺ concentration associated with poorly crystalline iron oxides such as ferrihydrite.

Iron sulfide phases were determined via a two-step sequential extraction procedure (Canfield et al., 1986). Acid volatile sulfide minerals (FeS) were determined by extraction with hot 6 N HCl under N₂, with the released sulfide trapped as Ag₂S. Pyrite (FeS₂) was then determined after addition of chromous chloride, with the sulfide again trapped separately as Ag₂S. After filtration, the concentrations of Fe in FeS and FeS₂ were determined stoichiometrically. The concentration of Fe present as FeS was subtracted from the Fe²⁺ concentration determined by the 0.5 N HCl extractions, to give surface reduced and carbonate-associated Fe²⁺. Replicate extractions gave a RSD of <5 % for all phases.

Scanning electron microscopy

Samples from the water column were preserved in 4 % formalin, filtered on Nucleopore carbonate filters, with a pore size of 0.2 μm, and dehydrated in 20 min. steps with ethyl alcohol (30 %, 50 %, 70 %, 90 % and two times 100 %). Then the samples were critical point dried prior to palladium/gold sputter coating and visualization on a Hitachi S-4800 FE scanning electron microscope ran at an electron beam acceleration voltage of 20 kV.

Molecular analyses

For molecular analyses we sampled 2 mL of sediment at 2 cm depth resolution using cut-off syringes inside a N₂-filled glove bag. Sediment was pooled together every 4 cm and fixed with MoBio RNAlater 1:1 v/v (Rotaru et al., 2018).
Prior to DNA extractions, most of the RNAlater was removed by centrifugation. For DNA extraction we used the top 16 cm of sediment from triplicate cores. Extractions were carried independently for each core with the MoBio RNA Soil kit coupled to the MoBio complementary DNA Soil kit, following the manufacturer’s protocol. DNA was quantified using a NanoDrop prior to downstream applications. The DNA extracted from each core was amplified with the following primer pair S-D-Arch-0519-a-S-15/S-D-Bact-0785-b-A-18, which according to Klindworth et al. (2013), was the best for MiSeq amplicon sequencing, targeting more than 89 % of Bacteria and more than 88 % of Archaea. PCR amplification and indexing (using Nextera XT index kit, Illumina) of the PCR products for the triplicate samples was conducted following the Illumina 16S rRNA gene amplicon sequencing protocol (Illumina, USA). The DNA samples were then sequenced using ×300 PE MiSeq sequencing approach at Macrogen (www.macrogen.com), using Illumina’s protocol. The sequences generated circa 1 million reads for each core, which were imported into CD-HIT-OTU to remove noisy data and clustered into OTUs, using a 97 % species threshold.

Figure 2. Methane profiling through the water column and sediment of lake La Cruz. (a) In the water column of Lake La Cruz, the highest methane concentrations were below 17-m depth where Methanothrix-like cells (inset) could be observed by scanning electron microscopy. (b) Sediment cores showed very high methane concentrations especially in the top 15-cm, indicating that methane has also sedimentary origin. The water column values as average ± standard error values are for triplicate samples taken at each specific water column depth; while values for sediments are from triplicate cores sampled every 2-cm. Perfiles de metano en la columna de agua y en el perfil de los sedimentos de la laguna de La Cruz. (a) En la columna de agua de la laguna de La Cruz, las concentraciones más altas de metano se encontraban por debajo de los 17 m de profundidad, donde células similares a Methanothrix (recurso) se podían observar mediante microscopía electrónica de barrido. b) Los testigos de sedimento mostraron concentraciones muy elevadas de metano, especialmente en los 15 cm superiores, lo que indica que el metano también tiene su origen en el sedimento. Los valores en la columna de agua son la media ± el error estándar de muestras triplicadas tomadas a cada profundidad específica en la columna de agua; mientras que los valores en los sedimentos son la media de testigos triplicados muestreados cada 2 cm.
cutoff. For taxonomy and diversity analyses, clean and clustered OTUs were analyzed using QIIME (Caporaso et al., 2010), against the Ribosomal Database Project database version 11. Alpha rarefaction analyses showed sufficient coverage of the diversity in all three sediment cores.

DNA extractions from mud-free incubations were performed using the MasterPure DNA purification kit as previously described (Rotaru et al., 2014b). Amplification of bacterial (27F, 5'-AGAGTTTGATCMTGGCTCAG and 1492R, 5'-TACCTTGTTACGACTT) and archaeal (344F – 5'-ACG GGYGCAGCAGGCGGA -3' and 1059R – 5'-GCCATGCACCCWCTCT-3') 16S rDNA sequences, library preparation, and 16S rRNA gene sequencing, was performed as previously described (Rotaru et al., 2018). Maximum likelihood phylogenetic trees were constructed using Geneious (Kearse et al., 2012). Sequence files can be found at NCBI under Bioproject ID: PRJNA510210.

RESULTS AND DISCUSSION

Our hypothesis was that the iron-rich Lake La Cruz would be a breeding ground for conductive, mineral-based syntrophy (Rotaru et al., 2018). We discovered that microorganisms enriched from Lake La Cruz carried out syntrophic degradation strictly dependent on conductive mineral additions and were unable to carry unaided DIET associations.

Geochemistry

We expected to find a niche for DIET/conductive-particle mediated IET in this Fe-rich methanogenic lake resembling the ocean in the Precambrian. La Cruz sediments displayed high methane concentrations in the top 15 cm, along with a significant proportion of reactive iron species (~70 % of the total Fe content) (Thompson 2018), which is very high relative to normal non-ferruginous aquatic environments (Poulton & Raiswell, 2002). During this sampling campaign, the sediments were overlain by ~10 m of anoxic water (Fig. 1). During summer months, the lake is known to persistently have a 4-5 m monimolimnion zone above the sediment, which is rich in Fe²⁺ (Vicente & Miracle, 1988). In our study we also noticed strong methane super-saturation near the bottom, where the methane concentration reached 4 mM, similar to concentrations in the surface sediment (Fig. 2). Gas ebullition was observed during sampling from the deep water table. Oftentimes, gas bubbles mainly consisting of methane and carbon dioxide (Camacho et al., 2017), percolated through the surface of the lake from the middle, as documented by an ecogram of the lake (Fig. 1d). Previous studies suggest that the sediment is the source of water-column methane (Oswald et al., 2016). Indeed we observed that sediment methane concentrations were highest in the top centimeters of the sediment (Fig. 2). Methane concentrations were also high in the water column (17-20 m), indicating methanogenesis occurred in the bottom waters as well as the top layers of the sediment (Fig. 2).

As documented previously (Oswald et al., 2016; Camacho et al., 2017), dissolved Fe²⁺ did build up below the chemocline to reach concentrations of ~250 μM above the sediment-water interface. In the sediment, dissolved Fe²⁺ concentrations continued to increase (Thompsen, 2018), reaching a peak of > 1000 μM at a depth of ~22 cm. These high dissolved Fe²⁺ concentrations in the water column and sediment porewaters are similar to those found in other iron-rich lakes (Vicente & Miracle, 1988; Bura-Nakic et al., 2009; Crowe et al., 2011; Nordi et al., 2013). The La Cruz sediments were high in TOC (average = 6.68±2.0 wt %), and carbonate minerals (average = 9.46±1.3 wt % inorganic C), which diluted the total Fe-content to 1.06±0.18 wt % on average (Thompson, 2018). This is considerably lower than the average global total Fe content of riverine particulates supplied to oceans and lakes (4.49 wt %; Poulton & Raiswell, 2002). Proportionally, however ‘reactive’ Fe phases (non-sulphidized Fe²⁺, Fe-oxides, Fe-sulfides) were abundant (70±8 %; Thompson, 2018) relative to the total Fe content of the sediment, of which only 18±5 % was sulfur bound (pyrite, other Fe-S minerals). Nevertheless, magnetite Fe accounted for less than 0.1 % of the total Fe-content in this sediment, while other Fe oxide minerals accounted for ~10 % of total Fe on average. Thus, non-sulphidized particulate Fe(II) was the dominant reactive Fe pool (~60 % on average).
Some of the iron minerals (Fe-sulfides and Fe-oxides) found in the sediments of lake La Cruz are electrically conductive (Fig. 3), of which magnetite and iron sulfides have been documented to facilitate mineral-mediated syntrophy (Liu et al., 2012, 2015; Zheng et al., 2017; Rotaru et al., 2018; Kato & Igarashi, 2018). Fe-sulfides, like pyrite, have been shown to aid long-range extracellular electron transfer from cells (Kondo et al., 2015) or enzymes (Mahadevan & Fernando, 2018) to electrodes. Moreover La Cruz sediments also contain coal particles (Romero-Viana et al., 2011), which are conductive (Fig. 3). Indeed it has been documented that conductive carbon materials (i.e. granular activated carbon) facilitate mineral mediated syntrophy as effectively as conductive Fe-minerals (Liu et al., 2012; Rotaru et al., 2018).

In situ bacterial diversity – with focus on described electogens

We therefore anticipated that electrically conductive particles inherent to La Cruz sediments would facilitate mineral mediated interactions between electogens and electrotrophic methanogens. Indeed, our data demonstrate that the community harbors organisms affiliated to groups of electogens including *Geobacter* (Fig. 4), and to DIET-methanogens including *Methanothrix* (Fig. 4). *Geobacter* and *Methanothrix* have previously been shown to carry out DIET in laboratory co-cultures (Rotaru et al., 2014a), and have been found to co-exist in several man-made environments, such as rice paddies (Holmes et al., 2017) and anaerobic digesters (Morita et al., 2011; Rotaru et al., 2014a). Our data showed that bacte-
ria affiliated to known electrogens/iron-reducers like *Geobacter* (0.6 % of all Bacteria), *Thiobacillus* (0.2 % of all Bacteria), *Desulfovibrio* (0.4 % of all Bacteria), and *Anaerolinea* (0.1 % of all Bacteria) co-existed with *Methanothrix* in Lake La Cruz sediments (Fig. 4). Together, all of these putative electrogens/iron reducers, summed up to circa 1 % of all Bacteria. Previously, members of these four genera, *Geobacter*, *Thiobacillus*, *Desulfovibrio*, *Anaerolinea*, have been shown to be capable of extracellular electron transfer to and/or from electrodes or metallic iron (Nakasono et al., 1997; Dinh et al., 2004; Gregory et al., 2004; Kawauchi et al., 2018; Pous et al., 2014; Rotaru et al., 2015), as well as iron-minerals (Bosch et al., 2012; Kawauchi et al., 2013; Lovley et al., 1993; Rotaru et al., 2015). The first two, *Geobacter* and *Thiobacillus* can also interact by DIET with other cells (Summers et al., 2010; Kato et al., 2012; Rotaru et al., 2014b, 2014a;), and this interaction has been shown to be expedited in the presence of conductive particles (Kato et al., 2012; Liu et al., 2012; Chen et al., 2014; Liu et al., 2015; Rotaru et al., 2014b; Zheng et al., 2017). It is therefore possible that all of these electrogenic species compete for the electron uptake of electrotrophic methanogens.

However, one of the most abundant genera in these sediments was *Smithella* (2.6 % of all bacteria), which has been assumed to be electroactive and carry DIET interactions with *Methanothrix* in an alkane-degrading consortium (Embree et al., 2014). Therefore, *Smithella* may establish a DIET-association with *Methanothrix* from Lake La Cruz sediments (see Archaea community below). Members of *Verrucomicrobia*

Figure 4. Relative phylum-level composition of (a) Bacteria and (b) Archaea harboring the top 16-cm of three sediment cores from lake La Cruz, as determined by 16S rRNA gene amplicon sequencing. *Composición relativa a nivel de filo de (a) Bacterias y (b) Arqueas albergadas en los 16 cm superiores de tres testigos sedimentarios de la laguna de La Cruz, según lo determinado por la secuencia del amplicón del gen 16S rRNA.*
were also very well represented (ca. 4.6 % of all bacteria) similar to what has been observed for 90 % of several lake sediments (He et al., 2017). Verrucomicrobia were recently proposed to carry extracellular electron transfer due to their genetic make-up, which comprises the appropriate porin systems and membrane-associated c-type cytochromes (He et al., 2017). It is also possible that Verrucomicrobia play a role in mineral mediated interspecies interactions. Nevertheless, Verrucomicrobia have never been shown to have the ability to interact syntrophically or to carry out extracellular electron transfer in laboratory cultures, and thus this predicted physiology requires further investigation. Some of the most abundant phyla were Bacteroidetes (10.8 % of the bacteria), and Firmicutes (2.5 % of all bacteria) (Fig. 4).

In situ archaeal diversity

Euryarchaeota accounted for more than half of the Archaea represented through amplicon sequencing (Fig. 4). Here, we show that in the sediments of Lake La Cruz, Methanothrix co-existed with electrogens (Geobacter, Thiobacillus, Desulfobacterium, and Smithella). Besides the acetoclastic/DIET-associated Methanothrix (3.7 % of all archaea), we identified canonical hydrogenotrophic-methanogens belonging to Methanoregula (2.5 % of all archaea), and very low numbers of Methanobacterium (0.2 % of all Archaea). The most abundant Archaea were the deep-branching Methanomassiliicoccus (40.6 % of all archaea). The role of Methanomassiliicoccus in sedimentary methanogenesis is not well understood since their only cultivated species-representative, *M. luminyiensis*, is a human-gut isolate strictly capable of H$_2$-dependent methylo trophic methanogenesis, but incapable of CO$_2$-reductive methanogenesis or acetoclastic methanogenesis (Dridi et al., 2012a). Besides their documented presence in the gut of humans (Dridi et al., 2012b), other animals (i.e. Salgado-Flores et al., 2016) or insects (Paul et al., 2012), *Methanomassiliicoccus* sp. have also been found in anaerobic digesters (e.g. Chojnacka et al., 2015), hydrothermal springs (e.g. Coman et al., 2013), subsurface aquifers and soils (e.g. Kadnikov et al., 2017), and aquatic sediments (e.g. Rotaru et al., 2018) to name a few. *Methanomassiliicoccus* was also one of the most abundant genera of methanogens, not only in the iron-rich sediments of Lake La Cruz, but also in Baltic Sea sediments that are potential niches for conductive particle-mediated syntrophy (Rotaru et al., 2018). It is possible that *Methanomassiliicoccus* is involved in electroactive interactions via minerals, especially taking into account that this group was recently associated with electroactive communities abundant on electrodes from bioelectrochemical systems set up with in oculums from soils (Ahn et al., 2014) and anaerobic digester sludge (Park et al., 2018).

Among the methanogens detected in La Cruz sediments, only species of *Methanothrix* have been previously shown to establish DIET-associations with *Geobacter* species (Morita et al., 2011; Rotaru et al., 2014a; Wang et al., 2016; Holmes et al., 2017). *Methanothrix* was earlier suggested to carry out DIET with *Smithella* (Embree et al., 2014), but the latter has never been shown to be capable of mineral-mediated or direct electron transfer. In a previous study, we have shown that a *Methanothrix*-species from the Baltic did not establish a mineral-mediated interaction with Baltic-*Geobacter*, but were instead competitively excluded by a *Methanosarcina*-Geobacter consortium, which carried a mineral-mediated syntrophic association (Rotaru et al., 2018). However, although *Methanosarcina* is a very effective DIET partner (Rotaru et al., 2014b, 2015) and mineral-syntrophy partner (Liu et al., 2012; Chen et al., 2014; Wang et al., 2018; Rotaru et al., 2018) they were poorly represented in La Cruz sediments (Fig. 4).

High methanogenic activity could only be maintained by conductive particles

To determine the effect of conductive particles on the Lake La Cruz methanogenic community, we compared incubations with or without additional conductive particles. These incubations showed that the methanogenic community was strictly dependent on the addition of conductive particles and independent of the type of substrate, conductive particle, or freshwater medium tested (Fig. 5). Incubations with conductive particles showed 2 to
4 fold increases in methanogenic rates (0.2-0.7 mM/day, depending on substrate) over incubations with non-conductive glass beads or without particle-amendment (0.09 to 0.18 mM/day, depending on the substrate). Moreover, high methanogenic activity was maintained in subsequent incubations only if conductive particles were added (Fig. 5). Cultures without conductive particles could not sustain methanogenesis for more than one subsequent transfer. This indicates a strict dependency of the enriched methanogenic community on conductive particles.

We observed that all tested substrates were transiently converted to acetate, which was converted quickly to methane in the presence of conductive particles, whereas acetate accumulated in the absence of conductive particles (Fig. 5). This is likely due to higher rates of acetate oxidation prompted by the addition of conductive particles, similar to previous observations of Bothnian Bay sediments where syntrophic acetate oxidation (SAO) relied on conductive minerals (Rotaru et al., 2018).

We determined which organisms were
enriched on acetate with or without conductive particles. For this we compared the acetate fed communities exposed to two types of conductive particles (GAC and magnetite) to a community exposed to no conductive particles. We determined that *Youngiibacter* and *Methanothrix* methanogens dominated the enrichments amended with both types of conductive particle (Fig. 6). On the other hand, in controls without conductive particles, after only one single transfer *Youngiibacter* could not be detected. In the absence of conductive particles methane production only occurred slowly for one transfer and in this case *Methanothrix* co-existed with *Clostridium* (Fig. 6).

Youngiibacter was only found in enrichments with conductive particles and its presence could be associated with rapid acetate consumption coupled to methane production (Fig 5). We therefore anticipate that *Youngiibacter* plays a role in conductive-particle mediated syntrophy. Nevertheless, until now little is known about this group of Firmicutes, and only recently two species of *Youngiibacter* have been described (Lawson et al., 2014; Tanaka et al., 1991), of which one is

Figure 6. Maximum likelihood phylogenetic trees (a, b) and Venn diagrams with the relative distribution of 16S rRNA-gene sequences for Archaea (a, c) and Bacteria (b, d) in La Cruz incubations with or without conductive particles. Archaeal (a) and Bacterial (b) 16S rRNA genes were retrieved from third mud-free transfer of acetate-incubations with magnetite (pink), and GAC (black-bold) or from a first mud-free transfer without conductive particles (light gray-white). (c) The only Archaeal 16S phyotype encountered in all incubations independent of treatment was *Methanothrix*-related. (d) The most abundant Bacterial phyotype encountered only in conductive particle-amended incubations was *Youngiibacter*-related. *Arboles filogenéticos de máxima verosimilitud (a, b) y diagramas de Venn con la distribución relativa de las secuencias del gen 16S rRNA para Archaea (a, c) y Bacteria (b, d) en incubaciones de muestras de La Cruz con o sin particulículas conductivas. Los genes Archaeal (a) y Bacterial (b) 16S rRNA se recuperaron de la tercera transferencia sin sedimento en incubaciones con acetato y magnetita (rosa) y GAC (negro fuerte) o de una primera transferencia sin sedimento y sin particulículas conductoras (gris claro-blanco). (c) El único filotipo de 16S de Archaeas encontrado en todas las incubaciones, independiente del tratamiento, estaba relacionado con *Methanothrix*. (d) El filotipo bacteriano más abundante encontrado solo en incubaciones complementadas con adición de partículas conductivas fue del tipo relacionado con *Youngiibacter*.
associated with fermentation of organics on coal surfaces during coal conversion to natural gas (Lawson et al., 2014). Coal, similar to activated carbon, is electrically conductive (Duba, 1977). Moreover, Methanothermobius have been found associated with coal conversion to natural gas (Beckmann et al., 2011; Lawson et al., 2014). It is therefore possible that Youngiibacter and Methanothrix play a role in conductive particle-mediated syntrophy in coal beds, and as well in Lake La Cruz sediments. However, a syntrophic association between Youngiibacter and Methanothrix has not been described before. We suggest that Youngiibacter released electrons from substrate/acetate oxidation onto conductive minerals that are then used as a source of electrons for Methanothermobius in order to reduce CO2 to methane. It is possible that Youngiibacter releases electrons extracellularly using a similar mechanism to that described for Geobacter namely a network of outer membrane c-type cytochromes (OMC) and pili (Shrestha et al., 2013). During DIET, OMCs were not as necessary for a donor Geobacter strain to carry substrate oxidation coupled with extracellular electron transfer (EET) and respiration, since OMCs could be completely replaced by the conductive iron oxide, magnetite (Liu et al.,

Figure 7. Proposed model interspecies interactions in La Cruz sediments facilitated by conductive particles. (a) Syntrophy mediated by a conductive nano-particles replacing outer membrane cytochromes (OMCs). Nevertheless, pili involved in EET are still available. (b) Syntrophy mediated by a conductive macro-particle (e.g. GAC), which plays the role of both and electron plug and outlet. (c) Syntrophy mediated by a conductive-mineral coat padding the cell surface. In lake La Cruz, conductive minerals could for example result from the precipitation of Fe2+ as Fe-S/thiol. Cell surfaces encrusted with a Fe-S coat might endorse the electron-transfer between the two distinct metabolic entities even in the absence of a typical EET/DIET conduit. **Modelo de interacciones interespecies propuesto para los sedimentos de La Cruz facilitados mediante partículas conductivas. (a) Sintrofa mediada por nanopartículas conductivas que reemplazan a los citocromos de membrana externa (OMC). Sin embargo, los píli involucrados en EET todavía están disponibles. (b) Sintrofa mediada por una macropartícula conductiva (es decir, GAC), que desempeña el papel de ambos, la conexión y la fuente de electrones. (c) Sintrofa mediada por una envoltura mineral conductiva que rellena la superficie celular. En el lago La Cruz, los minerales conductivos podrían, por ejemplo, resultar de la precipitación de Fe2+ como Fe-S/thiolatos- en el espacio periplásico de las células. Las superficies celulares incrustadas con una envoltura de sulfuros metálicos como Fe-S podrían avalar la transferencia de electrones entre las dos entidades metabólicas distintas, incluso en ausencia de un típico condutor EET / DIET.
2015). Instead, when it plays the role of electron donor Geobacter seems to necessitate e-pili for long range electron transfer to partner cells, as exemplified in a recent study (Ueki et al., 2018). In agreement with previous observations in Geobacter, Youngiibacter might employ type IV pili for EET to partner Methanothrix. Youngiibacter’s type IV pili gene sequence (T472_0202395) differs greatly from that of Geobacter in length (238 aminoacids longer than its correspondent in G. metallireducens) and sequence identity (only a stretch of 16 aminoacids showed 50 % identity). Nevertheless, this prepilin-gene encodes for a protein with high content of aromatic aminoacids (10.3 %) which could give this organism an advantage to carry EET (Walker et al., 2018). It is possible that conductive particles orbs the pili of Youngiibacter in a similar way to how they do for Geobacter (Liu et al., 2015; Wang et al., 2018) facilitating electron transfer to syntrophic partner methanogens.

Conductive-particle mediated syntrophy

Syntrophy mediated by conductive particles could occur in three different ways (Fig. 7). A first mode of action includes electrogens with limited expression of surface cytochromes whose role would be replaced with that of conductive minerals (pyrite, pyrrhotite, magnetite, goethite) found in sediments (Fig. 7a). Molecular and microscopic evidence for this type of association has been brought by studies in laboratory Geobacter co-cultures provided with magnetite (Liu et al., 2015). A second possibility is that cells plug into macro-sized conductive rocks (i.e. iron/manganese-nodules) with one cell releasing electrons onto the rock and the other receiving electrons (Fig. 7b). Evidence for such interactions was previously obtained in laboratory co-cultures with macro-sized conductive chars. In this case, using SEM, it was shown that the electogen/Geobacter did not require direct contact to the electrotoproph/Methanosarcina yet the conductive surface facilitated the syntrophic association (Chen et al., 2014; Liu et al., 2012). The third possibility (Fig. 7c), is that membrane-bound proteins facilitate the precipitation of Fe^{2+}-ions, e.g., with thiol groups (Milner-White & Russell, 2005) to form a conductive surface-conduit surrounding the cell. Extracellular electron transfer between such mineral-coated cells has been proposed (Kato et al., 2012), but has not been confirmed. However, this could be a possibility for microbes without an extracellular apparatus for electron transfer to partner cells.

In evolutionary terms, it is plausible that mineral-mediated interactions preceded interspecies electron transfer interactions based in diffusible chemicals, which require complex enzymes and cell-bound electrical conduits. Primordial protocells had not developed enzymatic machineries to maintain redox and proton gradients across cell membranes (Martin et al., 2003; Russell et al., 1990, 1994; Wächtershäuser, 1988b). It has therefore been suggested that minerals, which can uphold voltage differences, such as FeS/pyrite, might have helped nucleate the earliest membranes, playing the role of early membrane-bound catalysts, instead of electron transport chain enzymes (Martin et al., 2003). Later, the high reactive iron content of the Archaean ocean could have promoted the formation of proteins with Fe-S centers which are required and abundant in redox proteins of methanogens (Liu et al., 2010). Here, we propose that primitive cells with leaky membranes (Lane & Martin, 2012), allowed easy electron transfer via conductive minerals permitting energy exchange between separate metabolic protocell entities. Thus, conductive particles could have fostered the earliest interspecies interactions in the methanogenic and iron-rich Early Earth oceans, and possibly nurtured adaptation of interspecies associations pre-eukaryogenesis.

CONCLUSION

In conclusion, we show that the sediment of an early Earth ocean analogue is a niche for syntrophic associations dependent on conductive particles. Only if conductive particles were provided, could syntrophic bacteria coupled to methanogens oxidize their substrates. Thus, only in incubations with conductive particles, members of the genus Youngiibacter co-existed with Methanothrix. Incubations without conductive
particles resulted in the disappearance of *Youngiibacter*, and one transfer later to the demise of the methanogenic community. These data indicate that conductive particles were required to aid the pairing of the metabolism of *Youngiibacter* with that of *Methanothrix*, which sustained high rates of methanogenesis in this early Earth analogue – lake La Cruz. We propose that obligate mineral-syntrophy is an ancestral interspecies interaction established before complex membrane structures and enzymes evolved to mediate direct or indirect associations between species with distinct metabolism.

ACKNOWLEDGEMENTS

This work is a contribution to a Danish Research Council grant 1325-00022 awarded to AER. During the writing of this manuscript, AER has been supported by three other grants: a Sapere Aude grant from Danish Research Council (4181-00203), a Novo Nordisk Foundation award and an Innovationsfonden grant (4106-00017), CRL was supported by the EU’s H2020 program (#704272, NITROX). NP thanks the Seventh Framework Programme of the European Union Marie Skłodowska-Curie Intra-European Fellowships (BioCTrack 330064) for their support. JT acknowledges support from a NERC research studentship. We would like to acknowledge lab support by Lasse Ørum-Smidt, Erik Laursen, Heidi Grøn Jensen, Bente Hølbeck, and Susanne Møller. Special thanks to the Limnology team of the University of Valencia for their help in the field and laboratory work during the sampling days.

REFERENCES

et al. 2014. Promoting interspecies electron transfer with biochar. *Scientific Reports*, 4, 5019. DOI: 10.1038/srep05019

et al. magnetite and iron sulfides have been document-
Fe-oxides) found in the sediments of lake La Cruz
using SEM, it was shown that the electrogen/
minerals (pyrite, pyrrhottite, magnetite, goethite)
role would be replaced with that of conductive
G. metallireducens.

DNA Soil kit, following the manufacturer’s
triplicate cores. Extractions were carried inde-
was removed by centrifugation. For DNA extrac-

ty buried in the sediments or the possible impact
have never been
given to either the methanogenic communi-
ty, 2005. Sites for phosphates and iron-sulfur

2011. The methane cycle in ferruginous

Crowe

Methanosarcinales from soils (Ahn

mroads for conductive particle-mediated syntrophy
have a 4-5 m monimolimnion zone above the

This work is a contribution to a Danish Research

LiU, F., A.-E. ROTA R, P. M. Shrestha, N.

MALVANKAR, K. P. NEVIN & D. R.

LOVLEY. 2012. Promoting direct interspecies
electron transfer with activated carbon. Environ-
mental Microbiology, 5, 8982. DOI:

LiU, F., A.-E. ROTA R, P. M. Shrestha, N.

MALVANKAR, K. P. NEVIN & D. R.

LOVLEY. 2015. Magnetite compensates for
the lack of a pilin-associated c-type cytochrome
in extracellular electron exchange. Environ-
mental Microbiology, 17: 648–55. DOI:

LiU, Y., M. SIEPRAWSKA-LUPA, W. B.

WHITMAN & R. H. WHITE. 2010. Cysteine
is not the sulfur source for iron-sulfur cluster
and methionine biosynthesis in the methano-
genic archaeon Methanococcus maripaludis.
Journal of Biological Chemistry, 285:
31923–31929. DOI: 10.1074/jbc.M110.
152447

LLIRÓS, M., T. GARCÍA-ARMISEN, F. DAR-
CHAMBEAU, C. MORANA, X. TRIA-
DO-MARGARIT, Ö. INCEOGLU, et al. 2015.
Pelagic photoferrotrophy and iron cycling in a
modern ferruginous basin. Scientific Reports,
5, 13803. DOI: 10.1038/srep13803

Metabolic symbiosis at the origin of eukaryo-
tes. Trends in Biochemical Sciences, 24:
88–93.

Rapid assay for microbiually reducible ferric
iron in aquatic sediments. Applied and Envi-
ronmental Microbiology, 53, 1536–1540.

LOVLEY, D. R., E. E. RODEN, E. J. P.

POULTON, S. W. & D. E. CANFIELD. 2005. Development of a sequential extraction proce-
Mineral syntrophy in an iron rich meromictic lake

ROTHARU, A.-E., T. L. WOODARD, K. P. NEVIN & D. R. LOVLEY. 2015. Link between capacity for current production and syntrophic growth in Geobacter species. Frontier in Microbiology, 6, 744. DOI: 10.3389/fmicb.2015.00744
SALGADO-FLORES, A., M. BOCKWOLDT, L. H. HAGEN, P. B. POPE & A. SUNDSET. 2016. First insight into the faecal microbiota of the high Arctic muskoxen (Ovis moschatus). Microbial Genomics, 2 (7), e000066. DOI: 10.1099/mgen.0.000066

Moreover, La Cruz sediments also contain coal-like pyrite have been also shown to aid Fe-oxides) found in the sediments of lake La Cruz are electrically conductive (Fig. 3), of which limited expression of surface cytochromes whose conductive particles ornate the pili of communities exposed to two types of conductive particles. Verrucomicrobia, 2013), was the best for MiSeq communities, 2014a; Wang, 2012; Chen, 2017). The third community processing acidic effluent from the methanogenic community. These data Facts about a methane-producing microbial community – lake La Cruz. We propose that possibly nurtured adaptation of interspecies associations. As the biogeochemical setting of the earliest interspecies interactions in the methanogenic community. These data has not been described before. We suggest that the bacterium oxidizes complex organics to energetically more favorable than the usual partners (Summers et al., 2012; Chen et al., 2018). Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments. Journal of Microbiology, 55: 862–870. DOI: 10.1007/s12275-017-7104-1